
The Inter4QL Interpreter∗

Patryk Spanily

11 October 2012

∗Supported by the Polish National Science Centre grant 2011/01/B/ST6/02769.

1

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 4QL Language . 3

2 4QL Interpreter Design 3
2.1 Grammar of 4QL . 4
2.2 Requirements on the Interpreter 6
2.3 Tools Used . 7
2.4 The Class Diagram . 8

3 The Implementation of the Interpreter 8
3.1 Lexical and Syntactic Analysis of the Input Data 8
3.2 Types of Modules . 10
3.3 Modules Defined by Sets of Relations, Rules and Facts 10
3.4 External modules . 11
3.5 Internal Modules . 11
3.6 Operations on Relational Database 11

4 User Documentation of the Interpreter 13
4.1 Compiling from Sources . 14
4.2 Using the Interpreter . 14
4.3 Folders and File Structure in the Project 17

5 Further Development of the Interpreter 18
5.1 Expanding the Terminal Capabilities of the Interpreter 18
5.2 Extending Internal Modules . 20
5.3 External modules . 22
5.4 Optimizations . 24

A 4QL Language Grammar 25

B Interpreter Command Line 27

C 4QL programs examples 28

D The Structure of XML Files Interpreted by Inter4QL 29

2

1 Introduction

This paper presents Inter4QL – the interpreter of the rule-based query language
4QL with negation in bodies and heads of rules, belonging to the family of
DATALOG¬¬ languages.

The paper is organized as follows. The first section motivates this paper
and discusses main properties of the 4QL language. Section 2 provides the
main objectives and capabilities that the interpreter should achieve. It also
presents technologies used to develop the application and describes the class
diagram. Section 3 discusses the implementation of various parts of the system.
Section 4 is devoted to user documentation of the interpreter. The last section
gives a brief survey of modifications that can be included in future versions of the
application. Appendix A provides Extended Backus-Naur Form grammar of the
4QL language. Appendix B lists the interpreter commands with explanations
how to use them. In Appendix C examples of 4QL programs can be found. The
last appendix presents the structure of XML files that can be interpreted by
Inter4QL.

1.1 Motivation

This work is a companion paper to the application included in the master the-
sis [4]. The main result of the thesis was the Inter4QL interpreter and this paper
is focused on the way the application was developed and how to properly use it.

1.2 4QL Language

4QL is a language that belongs to the family of DATALOG¬¬ language, in-
troduced in [2]. It uses a four-valued semantics, in which in addition to the
“truth” and “falsity” there are also additional values for “unknown” and “in-
consistency”. An important feature of 4QL is its ability to directly address
problems related to inconsistencies and lack of information. These issues are
crucial in a number of areas where the closeness of the world is typically as-
sumed (called the Closed World Assumption and denoted by CWA). According
to CWA all the facts for which there is no information about, are by default
assigned the value “false”.

In many applications, including Semantic Web technologies or multi-agent
systems, CWA does not necessarily work. Those fields usually accept the Open
World Assumption, where the facts about which there is no information, are
assigned the value “unknown”.

More information about the language 4QL and the group working on it can
be found at [11].

2 4QL Interpreter Design

This section introduces a design of a 4QL language interpreter. We will present
the main objectives of the system as well as technologies that have been used

3

for implementation. In addition, the class diagram will be fully described.

2.1 Grammar of 4QL

This section presents the schema of programs that are written using 4QL syntax
grammar.

Built-in Types

The following data types can be used in the interpreter:

• literal - alphanumerical starting with a lowercase letter

• integer - decimal number without fractional part (with ’–’ in front or
without)

• real - decimal number with fractional part (with ’.’ sign as decimal sign)

• logic - logical value from the set {true, false, unknown, incons}

• date - date written in format YYYY-MM-DD where YYYY is year, MM
is month (with leading zero) and DD is day (with leading zero)

• datetime - date with time in format YYYY-MM-DD HH-II where HH
stands for hour (24-hour clock, with leading zero) and II stands for minutes
(with leading zero)

• variable - additional type (written as alphanumerical starting with a up-
percase letter) which can be used only in rules and queries.

File format

A simple schema of the program file written in 4QL is presented in Listing 1.

1 external:

2 \\ list of external modules

3 module X:

4 domains:

5 \\ declaration of domains for module X

6 relations:

7 \\ declaration of relations for module X

8 rules:

9 \\ declaration of rules for module X

10 facts:

11 \\ declaration of facts for module X

12 end.

13 module Y:

14 \\ declaration of next module Y

15 end.

Listing 1: simple schema of a 4QL source code file.

4

Double backslash \\ in 4QL grammar is used for indicating a comment
(everything after \\ until the end of the line is ignored by the interpreter). In
each program (each file) there can be an unlimited number of modules (but each
name of a module must be unique). External modules are described briefly in
Subsection 3.4.

Full grammar of 4QL in Extended Backus-Naur Form is provided in Ap-
pendix A.

Declaration of Domains

In the section of domain declarations an alias to a name of a certain type
can be given. Those aliases are useful in relationship declarations (relationship
arguments can be of the same type, so using aliases helps to distinguish different
parameters). Each domain declaration is a set of two alphanumerical strings
starting from a lowercase letter (where the first one is a name of a built-in type,
and second is the name of an alias) ended with a ’.’ (dot sign). An example is
given in Listing 2.

1 domains:

2 literal name.

3 integer height.

4 date dateOfBirth.

Listing 2: exemplary domains declaration.

Declaration of Relations

Relation declarations consist of relation names together with a list of types (or
type aliases as defined in the domain declaration section). Each relationship
should have a unique name and be ended with a ’.’ (dot sign). Example of
relation declarations can be found in Listing 3.

1 relations:

2 tall(name).

3 hasHeight(name , height).

4 hasBirthdate(name , dateOfBirth).

Listing 3: exemplary declaration of relations.

Declaration of Rules

In the ’rules’ section definitions of all the rules for a given module must be
provided. All of them (headers and bodies) should be compatible with the set
of relations defined in the previous section. In rules values of type variable can
be used. Each declaration of a rule must end with a ’.’ (dot sign). Listing 4
contains a sample section of rules declaration (with only one rule declared).

5

1 rules:

2 tall(X) :- hasHeight(X, Y), math.gt(Y, 180).

Listing 4: exemplary declaration of a rule.

Relation math.gt in the example is a relation from a built-in module math
with the intuitive meaning “greater than”.

Declaration of Facts

This part is responsible for defining the initial database of facts (the initial set
from which the reasoning starts). Each fact is defined by the name of a relation
(from the set of relations defined in that particular module) and the list of
constants of respective types (that must be compatible with the set of relation
of that module). Listing 5 contains an example of the base facts.

1 facts:

2 hasHeight(patryk , 195).

3 hasBirthdate(patryk , 1988 -05 -20).

Listing 5: exemplary declaration of facts.

Declaration of External Modules

In this part all the external modules (more about external module can be found
in Subsection 3.4) need to be defined. Each line is a declaration and starts with
the name of an external module, type of that module and a list of parameters.
Each declaration ends with a . (dot sign). An example of the external modules
declaration is shown in Listing 6.

1 external:

2 externalData xml(" file_with_facts.xml").

Listing 6: declaration of external modules example

2.2 Requirements on the Interpreter

Interpreter analyzes the source code and after processing the data it executes
analyzed fragments. In the case of the application described in this paper,
by executing the fragments of source code we understand reasoning based on
logical rules in accordance to the well-supported model calculation algorithm
(described in [2, 3]). However, apart from this functionality, the interpreter
should give additional features and that is the main subject of this subsection.

6

Interpretation of 4QL Programs

The basic functionality of the interpreter is loading source codes written in the
4QL language. In the case of an incorrect attempt to load a program (various
syntactic errors, lexical errors, incorrect references inside rules, etc.) the system
should write a human understandable list of error messages (allowing the author
to fix mistakes). After loading all modules of a correct program, all of these
modules should remain in the environment and the interpreter should allow to
load another program (an error should be presented if one would like to load
a module with the same name as a module already existing in the environment).

The Calculation of Well-Supported Model

After loading the program, the interpreter should check that references to the
external literals in all modules do not contain recursion. If they do, the inter-
preter should display the information about the list of the modules that have
recursive references to external literals. The graph of module references should
be calculated by the interpreter (so the reasoning should start from the low-
est layer). The last phase after loading a program and before user interaction
depends on the use of the algorithm calculating the well-supported model in
accordance with the previously computed order of reasoning.

Responding to User Queries

After calculating the well-supported model for each module from a loaded pro-
gram, the interpreter should allow to query about the facts that are in the
knowledge base. In addition to its simplest form, in which query relates to
a fact (as described by the name of module, the name of fact and a list of val-
ues), the interpreter must support queries with variables – the answer should
be the list of all the facts of a particular module which fit the query.

Saving the Results in the Form of an XML File

After loading the program (or programs), the interpreter should give the op-
portunity to write all or just part of the knowledge base to a file in an XML
format.

Loading Data from Modules in the form of XML Files or External
Knowledge Bases

The interpreter must be able to read the data stored in the XML file or external
database files. Defining new types of files or databases should not be complicated
in further development of the interpreter.

2.3 Tools Used

The interpreter has been written applying the following tools:

7

• C++ language with the use of STL

• Flex - The Fast Lexical Analyzer library (more can be found at [6])

• GNU Bison library (more can be found at [5])

• TinyXML library (more can be found at [7])

• Doxygen - documentation generator (more can be found at [8]).

A more detailed description of the use of these tools is provided in Section 3.

2.4 The Class Diagram

Figure 2.4 shows the class diagram for Inter4QL. The diagram is divided into
four main parts (color coded) and additional two helper classes (marked as white
classes). These are the main functionalities of different parts of the application:

• yellow colored - Application class being the main interpreter class

• green colored - classes that do lexical and syntactic analysis and correctness
checking

• violet colored - classes that deal with modules of different types

• red colored - classes dedicated to the establishing connection to the database.

Additional classes with white color deal with:

• VariableSpace class - storing all values occurring in the programs loaded
into environment

• Output class - printing the information on the screen.

3 The Implementation of the Interpreter

This section presents the implementation of the individual parts of the system.
Subsection 3.1 describes the scanning and parsing part of the Inter4QL and the
command-line interpreter. Subsection 3.2 explains how different types of mod-
ules are stored in application. The last subsection covers methods of reasoning
using information stored in the knowledge base.

3.1 Lexical and Syntactic Analysis of the Input Data

Frequently, the first screen of interpreter is a blank line and a command prompt.
Communication with the system is made by typing commands into the terminal
and the results can be seen (usually immediately) on the screen. The first part
of the interpreter application should recognize commands entered by the user.
From the beginning, the line entered in the standard input should be divided

8

Figure 1: Class diagram.

into appropriate tokens. Inter4QL uses Flex - The Fast Lexical Analyzer as
a library that is responsible for that part (the full documentation of flex library
can be found at [6]). Flex library allows the user to create a scanner with only
a list of regular expressions (Flex uses regular expression to split the string into
tokens called lexems). The tokens can also have additional values. For example,
INTEGER token can also store its integer value. A properly prepared file with
regular expressions1 is then translated by flex into the C++ code.2 The same
regular expressions are used in lexical analysis of the command-line interpreter,
as well as to analyze the source code of programs written in 4QL.

After the stage of translating the text into tokens, the interpreter needs to
check whether the lexem string is defined correctly. Inter4QL uses GNU Bison
library [5] for this part of input processing. GNU Bison library simplifies writing
parsers - one only needs to define the grammar of the language using produc-
tions, where terminal expressions are lexems or lexem strings and the library
will generate appropriate files in the C language. The full code of 4QL grammar
written in the GNU Bison language is provided in the file LineParser.y in the
directory with application sources.

Files automatically created by the library are:
LineParser.tab.c and LineParser.tab.h.

To maintain consistency in the project there is an additional Parser class (with

1In Inter4QL flex definition file name is Scanner.l.
2In Inter4QL FlexLexer class methods are defined in file lex.yy.cc, and FlexLexer class

is defined in FlexLexer.h.

9

definition in Parser.h and implementation in Parser.cc). It uses the GNU
Bison’s generated source codes in C.

A part of the application described in this section is indicated on the diagram
in Subsection 2.4 with the green color. The way how to extend the interpreter
with additional commands will be described in Subsection 5.1.

3.2 Types of Modules

In the previous section three types of modules have been introduced:

• modules defined by the program code in language 4QL

• external modules - external files with knowledge base facts

• internal modules - modules built into the interpreter environment (e.g.,
math).

All three types of modules share a common interface (the definition can be
found in class ModuleGeneric inside ModuleGeneric.h file), but they differ sig-
nificantly in implementation. In this subsection the differences will be described.
For the way of expanding the capabilities of the interpreter by new internal and
external modules see Subsections 5.2 and 5.3, respectively. This part of the
system has been marked on the classes diagram on Figure 2.4 in Subsection 2.4
with violet color.

Generic Interface

From the perspective of the Application class which deals with the entire
interpreter application, all types of modules are the same. Through the use of
a single interface, the flow of information between classes is the same regardless
of implementation of that particular module. This has been achieved by using
type casting (ModuleGeneric *). All types of modules have a set of relations
and a set of facts. Facts can be described as an initial set of facts (in the case of
the defined modules) or the final set of facts (for external modules). Both facts
and relations are stored in a database by using a generic interface SQLWrapper.

The following sections will cover the basic differences between different types
of modules.

3.3 Modules Defined by Sets of Relations, Rules and Facts

Code defined modules are basic type of module in the Inter4QL interpreter
(other types of modules are used as a “helpers” only). They are created as
instances of ModuleLocal class (and then cast to a pointer to a generic interface
ModuleGeneric). They are the only modules that have rules and domains, thus
the only one where the reasoning is made. After the file parsing stage of a 4QL
program, all rules are kept in appropriate structures (std::vector<Rule *>).
ModuleLocal is the only type of module where interpreter can make a reasoning
with the well-supported model calculation algorithm. All phases of reasoning

10

are held on the database side (more about the way it is implemented can be
found in Subsection 3.6).

3.4 External modules

External modules are responsible for connections to external data sources. They
have only finite relations and facts that will never change since the moment they
are read from the external source file (because no reasoning is made on external
modules). The way they are created as instances of ModuleExternal is described
in Subsection 5.3.

3.5 Internal Modules

Internal modules are responsible for the constructs that are difficult to express
by 4QL rules. The simplest example is the internal math module, which provides
a few relations like “greater than”, “lower than”, etc. Another example is the
module which allows users to convert data types (e.g., INTEGER to REAL). Such
structures can be expressed as DATALOG rules, but only in a very inefficient way.
However, there is a drawback of internal modules – the interpreter calculates all
the possible facts before the start of reasoning. Optimization, which can prevent
the above disadvantage is described in Subsection 5.4. The way of creating new
ModuleInternal instances is described in Subsection 5.2.

3.6 Operations on Relational Database

Database management system is a very important part of Inter4QL system
since the reasoning is based on SQL statements. Inter4QL does not impose the
use of any specific database management system but its current version uses
SQLite3 [9]). A generic class SQLWrapper (from SQLWrapper.h file) allows im-
plementation of connection to any database management system (PostgreSQL,
Oracle, MS SQL, etc.). The current version implements the connection inside
the files SQL SQLite.cc and SQL SQLite.h. SQLite3 gave the possibility to
work in-memory, so no additional configuration or external database manage-
ment system is needed for Inter4QL to work. This section will describe the way
of keeping facts and the way the reasoning is made (the well-supported model
calculation algorithm) in a SQLite3 database. The part of the application de-
scribed in this section is indicated on the diagram in the Subsection 2.4 with
red color.

Relations and Facts in Database

SQLite3 is a simple database management system in which there is no distinction
among data types. Everything is stored as a string (a sequence of characters).
This causes a slow down of the system, but it also simplifies the way the tables
and queries are created in Inter4QL.

11

Each relation named {relation name} defined in a module called
{module name} and n parameters will correspond to a database table with
the name {module name} {relation name} with n + 2 columns: param1,
param2, ..., paramn, is true, is false. The first n parameters correspond
to the arguments of relation, while the last two correspond to the value in the
tetravalent logic (it holds information about the fact that the parameter stored
in the first n columns). Here is an example of relationship hasHeight in the
module info:

info hasHeight

param1 param2 is true is false

patryk 185 1 0

marcelina 165 1 0

patryk 165 0 1

The table shows that in the database there is an information on patryk

height (we know that the fact hasHeight(patryk, 185) is true and that fact
hasHeight(patryk, 165) is false) and marcelina height (there is an informa-
tion only about a true fact: hasHeight(marcelina, 165)).

In addition to the previously described tables in the database for each table
named {module name} {relation name} with n+2 columns there exists ad-
equate views with n columns with names:

{module name} {relation name} true

and
{module name} {relation name} false.

Those views are created by selecting only the positive facts, and only negative
facts (it can happen that the fact is inconsistent, so it will exist in both of these
views).

In addition, there are also views
{module name} {relation name} only true

and
{module name} {relation name} only false,

which are similar to the previous ones, but do not contain inconsistent facts.
Those views are useful in further phases of reasoning.

Reasoning about Database Facts

In the previous section the way that facts are kept in the database was shown.
This section will present the algorithm which was used for reasoning on the data
stored in a relational database.

In the first two phases of the algorithm presented in [2] least Herbrand
models are computed. In order to do this it needs to be checked whether there
is a rule, whose body is factually true from the database and the fact being in
this rule header does not yet exist in the database. This action needs to be
repeated until the point at which none of the rules will generate a new fact.

12

How can it be checked if the rule generates new facts? A proper SQL state-
ment should be prepared. The easiest way to show a method of preparing such
queries is example based on module info, as shown in Listing 7.

1 tallBoy(A) :- boy(A), hasHeight(A,B), math.hd(B,180).

Listing 7: exemplary rule.

Since the assumption is made that this rule correctly refers to relations, it
follows that in the database there are at least tables: info tallboy, info boy,
info hasheight, math ht (and, of course, adequate views to these tables).
To check whether this rule generates new fact (or facts) we need to check links
between tables based on a rule expressed in the natural language:

“if a boy A has height B, and B is greater than 180 then A is a tall boy”.
The SQL query for that rule is shown in Listing 8.

1 select t1.param1 from

2 info_boy_true t1, info_hasheight_true t2, math_ht_true t3 where

3 t1.param1 = t2.param1 and t2.param2 = t3.param1 and t3.param2 =

180;

Listing 8: SQL query for rule from Listing 7.

If this query returns any new rows, it means that the column in each returned
row (denoted as param) tallBoy(param) is true. Now it is sufficient to check
whether in that returned set of rows there exists a fact that was not present in
the database. In the case that none of the rules generates new facts, the least
Herbrand model was calculated.

The second phase of reasoning is almost the same - the set of rules that take
part in the algorithm must be reduced by removing rules whose headers in the
first phase have been marked as inconsistent.

In the third phase of the algorithm two queries should be prepared: the first
one, which asks for true facts (inconsistent included) and the second, which
reasons only throughout true facts (inconsistent excluded). Those two queries
result sets need to be subtracted with the SQL command except, and the same
as in the previous phases this action continues until the moment that no new
facts are generated.

4 User Documentation of the Interpreter

This section deals with user documentation of the interpreter:

• installing (compiling) – see Subsection 4.1

• the way of using the Inter4QL application – see Subsection 4.2

13

• the structure of files and folders in the project – see Subsection 4.3.

4.1 Compiling from Sources

Inter4QL project has Makefile file, which is responsible for automatic compi-
lation of the application. In the Linux family systems or Mac OS X, in order to
compile from sources a g++ compiler is needed (the author used g++ version
4.5.2). In the systems of the Windows family the user needs to have a MinGW
package (Minimalist GNU for Windows [10]) and compile the project within
that environment. In addition, to compile the project the following libraries are
needed:

• Flex - version 2.5.35 or newer

• GNU Bison - version 2.4.2 or newer.

The binary version for Windows family operating systems is included with
the project sources and is available in the folder bin/. For the Linux and Mac
OS X version user must manually build the application.

4.2 Using the Interpreter

This section will describe the standard mode of using the interpreter environ-
ment of Inter4QL. The interpreter is started by running the command:
inter4ql.exe (for the Windows family operating system) or
./inter4ql (both for Linux and Mac OS X family operating systems)

in the directory of the executable application file. On startup the screen should
display information about the version of the application and a command line
prompt. The list of all interpreter commands can be found in Appendix B. In
the following sections we will describe the most important commands of the
interpreter.

Importing 4QL Programs

The basic function of Inter4QL is to interpret programs from the source code
files. Command import is responsible for reading external 4QL source code
files. After import, the user needs to prepare the path of the file he or she wants
to import in quotes and end the command with ’.’ (dot sign). An example of
the import command can be found in listing 9.

1 #import "filename .4ql"

2 Program loaded!

Listing 9: example of file importing.

If the source program contains errors, instead of the string Program loaded!

the interpreter will print the corresponding error on the screen. After executing

14

this command, all local modules will have their unique well-supported models
calculated.

Querying the Information Contained in the Knowledge Base

After loading modules (i.e., after the hidden reasoning stage), the user can start
querying the interpreter about the data in the knowledge base. In order to ask
for the value of the fact the name of the module, the name of the relation and
all their parameters must be entered and the whole command must be ended
by dot sign (see Listing 10).

1 # moduleName.relationName(param1 , param2 , ..., paramN).

Listing 10: example of knowledge base query.

In Listing 10 paramn is n-th parameter of the fact with appropriate type or
a variable (alphanumeric word that starts with a capital letter).

Listing 11 contains examples of the implementation of queries to the knowl-
edge base (on a slightly expanded set of data from the second example in Ap-
pendix C).

1 # data.tallBoy(A).

2 results:

3 data.tallBoy(tomek) : inconsistent

4 # data.hasHeight(A,B).

5 results:

6 data.hasHeight(marcelina , 165) : true

7 data.hasHeight(tomek , 190) : true

8 data.hasHeight(tomek , 180) : false

9 # data.hasHeight(tomek , A).

10 results:

11 data.hasHeight(tomek , 190) : true

12 data.hasHeight(tomek , 180) : false

13 # data.hasHeight(patryk , A).

14 results:

15 no results

Listing 11: more examples of knowledge base queries.

Saving the Database in the SQLite3 File Format

Inter4QL can save the entire database as a file in SQLite3 database format. This
gives the possibility to produce queries in SQL and provides additional ways of
presenting the computed data. In order to save the knowledge base command
save must be used with the filename in quotes ended by a dot sign. An example
is shown in Listing 12.

15

1 # save "sqlite3.db".

2 saving database to: "sqlite3.db"

Listing 12: saving environment to a database file.

In case of any problems, Inter4QL prints on the screen the relevant informa-
tion about the cause of the error.

Saving Modules as XML Files

In addition to saving the entire knowledge base as a database file, the interpreter
can also save a unique well-supported model of the module as an XML file.
In order to achieve this, the command save must be used but with a slightly
different syntax. Between the save command and filename the user should write
the name of module which will be saved as an XML file. As each command of
the interpreter it must be ended by ’.’ (dot sign). For an example see Listing 13.

1 # save data "data.xml".

2 saving module data (as xml) to: "data.xml"

Listing 13: saving module to an XML file.

In case of any problems, Inter4QL prints on the screen the relevant informa-
tion about the cause of the error.

Printing Basic Information about the Modules in the Environment

To print basic information about the modules the command print is used. After
the keyword the user should provide module name and end the command with
’.’ (dot sign). An example how to print basic information about module m0

from the first example in Appendix C can be found in Listing 14.

16

1 # print m0.

2 module m0:

3 relations:

4 a(literal)

5 beginning facts:

6 m0.a(overloaded (literal)) : true

7 m0.a(rested (literal)) : true

8 m0.a(success (literal)) : true

9 rules:

10 m0.a(wait (literal)) : true :- m0.a(overloaded (literal)) :

true

11 | m0.a(resttime (literal)) : true

12 m0.a(resttime (literal)) : true :- m0.a(wait (literal)) : true

13 m0.a(overloaded (literal)) : false :- m0.a(resttime (literal))

: true

14 m0.a(goodmood (literal)) : true :- m0.a(rested (literal)) :

true

15 | m0.a(success (literal)) : true

16 m0.a(rested (literal)) : false :- m0.a(resttime (literal)) :

false

Listing 14: printing basic module information.

Quitting the interpreter

Command quit is used to turn off the interpreter. After executing this com-
mand all the data stored in the memory of the interpreter is released (but all
that memory can be saved before quitting by using command save described in
previous sections). Listing 15 shows an example of quitting Inter4QL.

1 # quit.

2 Thanks for using!

3 RUN SUCCESSFUL (total time: 3m 29s)

Listing 15: quitting the interpreter.

4.3 Folders and File Structure in the Project

This section presents the structure of the files in the archive distributed on
4QL.org. The root folder contains the following folders:

• src/ - the source code of the interpreter Inter4QL

• src/sqlite3/ - the source code of the SQLite3 library

• src/tinyxml/ - the source code of the TinyXML library

• tests/ - the set of tests of the interpreter

17

• documentation/ - the source code documentation (in html format) au-
tomatically generated (based on comments in source code) by doxygen
application.

5 Further Development of the Interpreter

The interpreter will be developed in the future and this section presents some
of the proposed extensions of the application. Logical design (discussed in Sub-
section 2.4) helps in modifications or expansions of the system. In the next
subsections various ways of how the project can be extended by a programmer
will be presented. The final section considers ideas on a variety of modifications
and improvements of the interpreter, which were not implemented in the version
up-to-date by the time writing this paper.

5.1 Expanding the Terminal Capabilities of the Interpreter

In this section we show how to add new commands to the interpreter on the
basis of a command list which prints all the loaded modules in the environ-
ment. To do this, changes in the files Types.h, Scanner.l, LineParser.y and
Application.cc needs to be made.

Changes in Definitions of Program Tree

The first step that needs to be done in order to add a new command to the in-
terpreter depends on changing the enumerating type, which indicates what kind
of a line is loaded through command-line. This is made by adding a value to the
enum type inside line type structure in file Types.h. In the example shown
in Listing 16, the added value will be LIST MODULES, which will mean that the
command will be asking for the modules currently loaded in the environment.

1 struct line_type {

2 enum type {

3 PROGRAM , PRINT , IMPORT , RULE , QUIT , LIST_MODULES

4 };

5 };

Listing 16: changes in file Types.h.

Changes in the Lexical and Syntactic Analyzers

Changes in the lexical analyzer and syntax analyzer must be interrelated. In the
lexical analyzer (or more precisely in the file Scanner.l), the relevant instruc-
tion (in correct Flex syntax) must be added. In the case of detecting a keyword
list in the input, the scanner must return a relevant type (which in the latter
part of this section will be defined in the parser). A particular attention must
be paid in order to add a new line to the file Scanner.l above the line with

18

the regular expression that could validate the word list (if not, the scanner will
validate word list as an alphanumerical, not a LIST MODULES token).

1 list { return Inter4ql :: LineParser ::token :: LIST_MODULES; } // new

2 [a-z][a-zA-Z0 -9\-]* {

3 yylval ->value = new Value(yytext);

4 return Inter4ql :: LineParser ::token::ID;

5 }

Listing 17: changes in file Scanner.l.

The enumeration type LIST MODULES in the moment of editing the file
Scanner.l does not exist yet, so the next operation is to create the appro-
priate token in the parser file (in GNU Bison syntax). In this example, a new
object has to be called LIST MODULES similar to the token that was added to
the type enum. In the parser’s source code (file LineParser.y) an entry must
be added in the terminal symbols section, as shown in Listing 18.

1 %token LIST_MODULES

Listing 18: changes in file LineParser.y.

An appropriate entry corresponding to the command must be added into the
grammar of the language. By default, all the commands in the interpreter end
with a dot that corresponds to the terminal symbol DOT. In order to give the
parser the capability to read a new command line a production must be added
to the nonterminal symbol line (see Listing 19).

1 line : (...)

2 | LIST_MODULES DOT { data.type = LIST_MODULES; }

3 ;

Listing 19: additional changes in file LineParser.y.

Between the braces in the code, a valid value of variable data (which is
returned in main interpreter loop) must be set. In that case the only operation
that needs to be done is simply setting the type of line (the same one which was
added to the enumeration in struct line type in the beginning of this section).

Changes in the Source code of the Main Module

The last step, which needs to be performed is to edit the method
Program::parse line() in the Application.cc file. In the body there is
a switch (conditional statement) instruction which needs to be extended (exam-
ple can be found in Listing 20).

19

1 switch(l->type) { (...)

2 case LIST_MODULES:

3 {

4 this ->output ->print(" available modules :\n");

5 for(int i = 0; i < this ->modules ->length (); i++)

6 this ->output ->print(this ->modules[i]->get_name () + "\n");

7 break;

8 }

9 }

Listing 20: changes in file Application.cc.

After making the changes accordingly to previous sections and recompiling
the project, a new command list is ready to use. Listing 21 shows an example
of using this command in a previously prepared interpreter environment:

1 # list.

2 available modules:

3 math

4 module_01

5 module_xml

Listing 21: example of using list command.

5.2 Extending Internal Modules

This section will describe a method how to create a new internal module. Ac-
curate description of an internal module can be found in Subsection 3.5. All
internal modules should inherit from class ModuleInteral which, in turn, is
the implementation of the common interface of all types of modules in the sys-
tem. Special attention should be paid to the class constructor and the method
generate facts(). The last part of this subsection describes the way how to
add internal module into the environment of the interpreter.

In order to maintain the project properly, all the files with declarations and
definitions of additional modules are located in the folder modules/ and that
is the proper place for putting new module source code files. The method of
creating new internal modules will be shown on the example of mathematical
module (math). The full source code of mathematical module can be found
in source code files modules/Math.cc (implementation) and modules/Math.h

(definition).

Constructors

Each internal module constructor should collect pointers to class instances of
VariableSpace and SQLWrapper. The first of them gives access to all available
values in the program, on which basis it will be possible to generate all the

20

facts. The second pointer allows one to add those facts into the database.
The constructor for mathematical module is provided in Listing 22.

1 Math(VariableSpace *_v, SQLWrapper *_sql);

Listing 22: constructor definition for module math.

In implementation, in addition to call the parent constructor, the following
steps must be made:

1. set the appropriate name for the module:

1 this ->name = std:: string ("math");

2. set the appropriate relation list of that module

1 std::vector <Domain *> *ii = new std::vector <Domain*> ();

2 for (int i = 0; i < 2; i++)

3 ii->push_back(new Domain(variable_type :: INTEGER));

4 this ->relations = new std::vector <Relation *>();

5 // add function gt (greater than), with two integer

arguments

6 this ->relations ->push_back(new Relation ("gt", ii, "math"));

3. create a module using the method offered by the class responsible for the
connection to the database

1 this ->sql ->create_module(this);

All the values created in the constructor by the new keyword need to be
released by using delete keyword in the destructor.

Generating Facts into the Database

Generating facts in internal modules takes place each time a program is loaded
(in order to add all the values existing in the program into the variable space),
so at the beginning all the facts established in previous call need to be removed.
Subsequently, for each relationship defined in the constructor and for all possible
values, all facts must be created by using appropriate add fact() method call
of the class corresponding to the database link. Sample code that generates all
the facts for the function gt (greater than) is shown in Listing 23.

21

1 void Math:: generate_facts () {

2 for (int i = 0; i < this ->relations ->size(); i++)

3 this ->sql ->delete_from_table(this ->relations ->at(i)->

sql_name ());

4 std::map <int , Value*> *is = this ->variable_space ->

get_integer_space ();

5 std::map <int , Value*>:: iterator it1 , it2;

6 for (it1 = is->begin(); it1 != is->end(); it1 ++) {

7 for (it2 = is->begin(); it2 != is->end(); it2 ++) {

8 std::vector <Value *> * v = new std::vector <Value *>();

9 v->push_back(this ->variable_space ->get_pointer(it1 ->

first));

10 v->push_back(this ->variable_space ->get_pointer(it2 ->

first));

11 if (it1 ->first > it2 ->first) {

12 this ->sql ->add_fact(new Fact("math", "gt", v));

13 } else {

14 this ->sql ->add_fact(new Fact("math", "gt", v, 0, 1)

);

15 }

16 delete v;

17 }

18 }

19 return;

20 }

Listing 23: example of fact generation process.

Connecting the Internal Module into the Interpreter Environment

The last activity that must be done to make an internal module work, is in-
cluding it into the environment. To do this, at the end of constructor code of
application (in the file Application.cc) the following line should be added:

1 this ->modules ->push_back ((ModuleGeneric *) new Math(variable_space ,

sql));

Listing 24: changes in file Application.cc.

5.3 External modules

A detailed description of external modules can be found in Subsection 3.4. Ex-
ternal modules inherit from ModuleExternal class, which is analogous to the
class ModuleInternal. The only method that needs an implementation is the
constructor - all relations and facts occurring in the module must be imple-
mented inside it. Afterwards, file Application.cc must be changed - an in-
stance of developed external module must be instantiated.

22

Constructor

The constructor for external modules has two main goals. The first is to collect
all the parameters that the parser encountered in the declaration of the outdoor
unit in the 4QL program file. The second one is to generate all relations and
facts (external modules do not have any rules nor domains). An exemplary
constructor for module XMLReader which deals with loading XML format files
is provided in Listing 5.3.

1 XMLReader :: XMLReader(std:: string _name , std:: string _filename ,

2 SQLWrapper* _sql , Checker *_checker , VariableSpace *_vs)

3 : ModuleExternal(_vs , _sql) {

4 this ->name = _name;

5 this ->checker = _checker;

6 this ->facts = new std::vector <Fact*>();

7 this ->relations = new std::vector <Relation *>();

8 this ->read_file(_filename);

9 }

The method read file deals with loading relations and facts from an XML
file. Its implementation is too large to present it here, but the source code can
be found in modules/XMLReader.cc.

Adding External Modules into the Interpreter Environment

After implementing an external module class, an entry must be added into
Application.cc file - in method create external an instance of new module
must be created. For an exemplary source code for module xml see Listing 25.

1 ModuleGeneric *Application :: create_external(ExternalDeclaration* e)

{

2 if (e->get_type () == std:: string ("xml"))

3 return this ->create_external_xml(e->get_name (), e->

get_params ());

4 throw new Exception(std:: string (" Cannot create module ") +

5 e->get_name () + " (type: " + e->get_type () + ")!\n");

6 }

Listing 25: exemplary source code for module xml.

The method create external xml needs to check whether given parame-
ters are correct. It can be done as observed on listing 26.

23

1 ModuleGeneric *Application :: create_external_xml(std:: string name ,

2 std::vector <Value*> *domains) {

3 if (domains ->size() != 1)

4 throw new Exception(std:: string (" Wrong number of parameters"

5 " specified for external module ") + name + "!\n");

6 if (domains ->at(0) ->get_type () != variable_type :: STRING)

7 throw new Exception(std:: string (" Wrong type of parameter

specified "

8 "for external module ") + name + "!\n");

9 return (ModuleGeneric *) new XMLReader(name ,

10 domains ->at(0) ->get_value_string (), this ->sql ,

11 this ->checker , this ->variable_space);

12 }

Listing 26: checking the correctness of parameters.

5.4 Optimizations

This section describes all the improvements to the project that were found
during the design of Inter4QL but have not been implemented in its current
version.

Creating the Reasoning Tree

In the current version of the interpreter, each phase of reasoning is finished
when none of the rules generates additional facts. In the case when at least one
of the rules gives a new fact, a special flag is set. The flag causes all the rules
to check for new facts again. It can be noticed immediately that this approach
is not very efficient. In the worst case, all rules must be checked even if none
of them have the newly generated fact inside their bodies, thus cannot produce
any additional facts!

The solution to this problem would be to create an additional data structure
in each module containing rules. Let us call it the reasoning tree. This structure
must share, for each relation name, a list of rules, that have that relation inside
their bodies at least once. For example, this structure may be a standard library
map from strings (relation names) into the domain of rules, defined as follows:

1 std::map <std::string , std::vector <Rule *>*> links;

This structure would fill up during the creation of the module. Reasoning
would be a FIFO (first in, first out) queue with all the rules on the beginning.
After each rule check, all the rules from the reasoning tree that are not in the
queue should be added at the end of the queue. That would prevent checking
rules that cannot give any more facts upfront.

24

Using SQL Queries in Some Functions of Internal Modules

Some of the possibilities offered by the internal modules (e.g., math module) can
be achieved inside SQL language queries without the need of joining additional
database tables. Instead of creating tables in the database, which offers simple
operation, these relationships could take part in SQL queries.

One of the relationships that can be easily translated into an SQL query is
the relation “greater than” which is provided by the math module. Let us recall
an example from Section 2.1:

1 tallBoy(A) :- boy(A), hasHeight(A,B), math.ht(B,180)

Instead of being translated into the complex query:

1 select t1.param1 from boy t1, hasHeight t2, math_gt t3 where

2 t1.param1 = t2.param1 and t2.param2 = t3.param1 and t3.param2 =

180;

it can be translated into a simpler query:

1 select t1.param1 from boy t1, hasHeight t2 where

2 t1.param1 = t2.param1 and t2.param2 > 180;

That query is simplified by deleting one table join on database relations.
This seems not to be a significant difference, but table math gt has n2 rows
(when assuming variable space has n integers) which needs to be calculated
before the algorithm starts. That is making a real difference even for not that
big n.

A 4QL Language Grammar

This appendix provides a fully described grammar of 4QL language in Extended
Backus-Naur Form. Nonterminal symbols are marked between brackets, while
expressions in monospace font surrounded by quotes are terminal symbols. The
symbol ε is used for marking empty production.

〈program〉 ::= 〈external〉〈modules〉

25

〈external〉 ::= ε | ‘external:’〈external declarations〉

〈external declarations〉 ::= 〈external declarations〉〈external declaration〉

〈external declaration〉 ::= 〈id〉〈id〉‘(’〈values〉‘).’

〈modules〉 ::= ε | 〈modules〉 〈module〉

〈module〉 ::= ‘module’〈id〉‘:’〈domains〉〈relations〉〈rules〉〈facts〉‘end.’

〈domains〉 ::= ε | ‘domains:’ 〈domain declarations〉

〈domain declarations〉 ::= ε | 〈domain declarations〉〈domain declaration〉

〈domain declaration〉 ::= 〈type〉〈id〉‘.’

〈relations〉 ::= ε | ‘relations:’ 〈relation declarations〉

〈relation declarations〉 ::= ε | 〈relation declarations〉〈relation declaration〉

〈relation declaration〉 ::= 〈id〉‘(’〈parameters〉‘)’

〈rules〉 ::= ε | ‘rules:’〈rule declarations〉

〈rule declarations〉 ::= ε | 〈rule declarations〉 〈rule declaration〉

〈rule declaration〉 ::= 〈rule head〉‘:-’〈relation list〉‘.’

〈rule head〉 ::= 〈id〉‘(’〈arguments〉‘).’
| ‘-’〈id〉‘(’〈arguments〉‘).’

〈relation list〉 ::= 〈relation in rule〉
| 〈relation list〉‘,’〈relation in rule〉
| 〈relation list〉‘|’〈relation in rule〉

〈relation in rule〉 ::= 〈id〉‘(’〈arguments〉‘)’
| ‘-’〈id〉‘(’〈arguments〉‘)’
| 〈id〉‘.’〈id〉‘(’〈arguments〉‘)’
| ‘-’〈id〉‘.’〈id〉‘(’〈arguments〉‘)’
| 〈id〉‘(’〈arguments〉‘) in {’〈logic values〉‘}’
| ‘-’〈id〉‘(’〈arguments〉‘) in {’〈logic values〉‘}’
| 〈id〉‘.’〈id〉‘(’〈arguments〉‘) in {’〈logic values〉‘}’
| ‘-’〈id〉‘.’〈id〉‘(’〈arguments〉‘) in {’〈logic values〉‘}’

〈logic values〉 ::= 〈logic〉 | 〈logic values〉‘,’〈logic〉

〈arguments〉 ::= 〈argument〉
| 〈arguments〉〈argument〉

26

〈argument〉 ::= 〈value〉〈variable〉

〈facts〉 ::= ε | ‘facts:’〈fact declarations〉

〈fact declarations〉 ::= ε
| 〈fact declarations〉〈fact declaration〉

〈fact declaration〉 ::= 〈id〉‘(’〈values〉‘).’
| ‘-’〈id〉‘(’〈values〉‘).’

〈values〉 ::= 〈value〉
| 〈values〉‘,’〈value〉

〈value〉 ::= 〈id〉 | 〈string〉 | 〈integer〉 | 〈real〉
| 〈logic〉 | 〈date〉 | 〈datetime〉

〈type〉 ::= ‘literal’|‘string’|‘integer’|‘real’
| ‘logic’|‘date’|‘datetime’

〈parameters〉 ::= 〈id〉 | 〈parameters〉 ‘,’ 〈id〉

Non-terminals that have not been specified above are respectively:

• id – alphanumerical string that begins with a lowercase letter

• string – string surrounded by quotes

• integer – integer number (with a minus sign in front or without)

• real – number (dot is used as decimal mark)

• logic – a word from the set {true, false, incons, unknown}

• date – date in format YYYY-MM-DD

• datetime – date with hours in format YYYY-MM-DD HH-II

B Interpreter Command Line

This appendix presents all the command line commands of Inter4QL, described
in more detail in Subsection 4.2.

• import "program.4ql". - causes the interpreter to load the program
contained in file program.4ql

• print module. - print outs the basic information about module module

• save "database.db". - saves entire knowledge base in SQLite3 file for-
mat database.db

27

• savedb "database.db". - same as above

• save module "module.xml". - saves entire module well-supported model
in XML file module.xml

• savexml module "module.xml". - same as above

• module.relation(param1, param2). - causes a query for tetravalent
value of fact relation(param1, param2) inside module module

• modules. - lists all the modules available in the environment

• quit. - exits the interpreter.

C 4QL programs examples

1 module m0:

2 relations:

3 a(literal).

4 rules:

5 a(wait) :- a(overloaded) | a(resttime).

6 a(resttime) :- a(wait).

7 -a(overloaded) :- a(resttime).

8 a(goodmood) :- a(rested) | a(success).

9 -a(rested) :- -a(resttime).

10 facts:

11 a(overloaded).

12 a(rested).

13 a(success).

14 end.

Listing 27: examplary 4QL program.

The well-supported model for program from Listing 27 is:

{a(success), a(good mood), a(overloaded), -a(overloaded), a(wait),
-a(wait), a(rest time), -a(rest time), a(rested), -a(rested)}

28

1 module data:

2 domains:

3 literal name.

4 integer height.

5 relations:

6 canReach(name).

7 hasHeight(name , height).

8 boy(name).

9 tallBoy(name).

10 rules:

11 canReach(A) :- tallBoy(A).

12 tallBoy(A) :- boy(A), hasHeight(A,B), math.gt(B ,185).

13 -tallBoy(A) :- boy(A), hasHeight(A,B), math.gt(186,B).

14 facts:

15 boy(tomek).

16 -tallBoy(tomek).

17 hasHeight(tomek , 190).

18 end.

Listing 28: exemplary 4QL program.

The well-supported model for program from Listing 28 is:

{boy(tomek), hasHeight(tomek, 190), tallBoy(tomek),

-tallBoy(tomek), canReach(tomek), -canReach(tomek)}

D The Structure of XML Files Interpreted by
Inter4QL

Inter4QL gives user the ability to load an XML file with the data (as an external
module - a full description can be found in Section 3.2). This appendix describes
the correct structure of an XML file that can be loaded by the class XMLReader.

External data source in the form of an XML file must define the relationships
that occur in it, and a collection of facts. The main element in the structure of
the module must be named and must contain two elements: relations and facts.
Below is a diagram of the structure of the file:

1 <module >

2 <relations >

3 <!-- relation definitions section -->

4 </relations >

5 <facts >

6 <!-- fact definitions section -->

7 </facts >

8 </module >

29

Defining Relations

Definitions of relations are inside the element relations and each of them is
an independent element of relation type. The relationship is defined by set-
ting the name (in an element called name) and to determine typical parameters
(params element inside).

Types of parameters are defined by a list of param elements, each of which
contains one of the built-in Inter4QL data types (full list can be found in Sub-
section 2.1). An example of the definition of a relation is shown below:

1 <relation >

2 <name >boy </name >

3 <params ><param >literal </param ></params >

4 </relation >

Defining Facts

Definitions of facts are inside the element facts and each of them is an indepen-
dent element of fact type. Name of the relation must be provided (in element
name) which fact points to, and a list of parameters (in element params, defined
the same way as in the relation definition). If a fact is negative there must be
a negated empty XML entity inside. Examples of fact definitions can be found
in Listing 29.

1 <fact >

2 <name >boy </name >

3 <params ><param >tomek </param ></params >

4 </fact >

5 <fact >

6 <negated/>

7 <name >boy </name >

8 <params ><param >marcelina </param ></params >

9 </fact >

Listing 29: exemplary definitions of facts.

30

Example of a Valid XML File

1 <module >

2 <relations >

3 <relation >

4 <name >hasHeight </name >

5 <params ><param >literal </param ><param >integer </param ></params >

6 </relation >

7 <relation >

8 <name >boy </name >

9 <params ><param >literal </param ></params >

10 </relation >

11 </relations >

12 <facts >

13 <fact >

14 <name >boy </name >

15 <params ><param >tomek </param ></params >

16 </fact >

17 <fact >

18 <name >hasHeight </name >

19 <params ><param >tomek </param ><param >190</param ></params >

20 </fact >

21 </facts >

22 </module >

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-Wesley
Pub. Co., 1996.

[2] J. Maluszyński, A. Sza las, Living with Inconsistency and Taming Non-
monotonicity, in: Datalog Reloaded, G. Gottlob, G. Grasso, O. de Moor,
and A. Sellers, eds., LNCS 6702, 384–398, 2011.

[3] J. Maluszyński, A. Sza las, Logical Foundations and Complexity of 4QL,
a Query Language with Unrestricted Negation, Journal of Applied Non-
Classical Logics 21(2), 211–232, 2011.

[4] P. Spanily, Interpreter for four-valued rule-based query language 4QL, M.Sc.
Thesis, Institute of Informatics, University of Warsaw, 2011. In Polish.

[5] Bison - GNU parser generator, http://www.gnu.org/software/bison/

[6] Flex: The Fast Lexical Analyzer, http://flex.sourceforge.net/

[7] TinyXML C++ library for parsing XML,
http://sourceforge.net/projects/tinyxml/

[8] Doxygen, http://www.stack.nl/∼dimitri/doxygen/

[9] SQLite3 Home, http://www.sqlite.org/

31

[10] MinGW – Minimalist GNU for Windows, http://www.mingw.org/

[11] About 4QL at 4QL, http://4ql.org/

32

