
The inter4ql Interpreter
 Lukasz Bia lek

October 2013

2

Contents

Introduction 5

1 Making inter4QL work 7
1.1 4QL package . 7

1.1.1 4QL package structure . 7
1.1.2 Ready binary files . 7
1.1.3 Documentation . 8
1.1.4 Example program files . 8
1.1.5 Source code . 8
1.1.6 Tests . 8

1.2 Compiling the interpreter . 8
1.2.1 Linux compilation . 8
1.2.2 Windows compilation . 9
1.2.3 Windows compilation - known issues 9

2 Using of the interpreter 11
2.1 Supported commands . 11
2.2 Basic usage examples . 11

3 Writing own 4QL program 15
3.1 Module structure . 15

3.1.1 Domains . 15
3.1.2 Relations . 16
3.1.3 Rules . 16
3.1.4 Facts . 18

4 Developing own inter4QL features 19
4.1 Class diagram . 19
4.2 Data structures . 20
4.3 Writing own external module . 20
4.4 Class characterizations . 21

Summary 25

A 4QL language grammar 27

Bibliography 29

3

4

Introduction

4QL is a rule-based query language. Its name is an acronym for four-valued1 query language.
Development of the language was started in 2010 on Faculty of Mathematics, Informatics and
Mechanics (University of Warsaw) and University of Linköping (Sweden) by J. Ma luszyński
and A. Sza las [2] and is still continued. Two years ago the first version of inter4QL (4QL
interpreter) has been developed as part of student master’s thesis [3]. Since then, it was
used for testing small 4QL programs. It has also been released for public use on project web
page2. During those two years some problems and bugs has been found, which was the main
reason for writing a new version. In September 2013 inter4QL v2.0 was released as part of
my master’s thesis [1]. Because of constant development of the program, next versions (v2.1
and v2.2) were released afterwards.

It is assumed, that the reader knows basics about interpreter and 4QL language. To find
out more about 4QL language, please refer to [2] and [5]. The interpreter description can be
found in documents [1] (in Polish, most up-to-date) and [6] (in English). Moreover, there is
a full Doxygen [10] documentation included in interpreter source files.

This document is a kind of manual for the newest version of the interpreter. It is also a
summary of features added during inter4QL v2.x development. It should give a good back-
ground before both using the interpreter and starting own implementation of new features.

1This part corresponds to four logical values existing in the language: true, false, inconsistent and unknown
24QL web page: www.4ql.org

5

6

Chapter 1

Making inter4QL work

1.1 4QL package

Full inter4QL source code and all additional files can be downloaded from official 4QL web
page: www.4ql.org. All news and papers about 4QL language as well as contacts to people
working on it can also be found there.

1.1.1 4QL package structure

Let’s assume, that the newest 4QL zip package is downloaded from 4QL web page. It can
be very easily unzipped using tools available for both Windows and Linux. Let’s see the
directory structure of the package:

• bin - Compiled binary files of the interpreter ready to use

Windows - Windows binary files

Linux - Linux binary files

• doc - Whole technical documentation of the project

!doxygen config file - Contains configuration file for Doxygen

html - Contains html documentation of the project

• examples - Five examples of valid 4QL program

• src - Source code of the project

• tests - Tests for the interpreter

algorithm - 4QL manual test files, testing algorithms

checker - 4QL manual test files testing checker module

unit - Automatic tests that can be run automatically by calling make.

1.1.2 Ready binary files

The package delivers ready to use binary files with latest version of the interpreter. There are
versions compiled for both Windows and Linux. If you do not want to compile the project
yourself, you should use those binary files. Except from main program, there are also two

7

example external module binaries included1. However, it can not be guaranteed that those
binary files will work on every computer. In case of failure while running the interpreter, you
should try to compile the project yourself.

1.1.3 Documentation

The project has full technical documentation available. All class dependencies, function and
class descriptions can be found there. Documentation can be viewed by opening
/doc/html/index.html in any internet browser.

1.1.4 Example program files

In order to better understand 4QL program structure, there are some program files included
in package. Those programs can be loaded into the interpreter in order to manually test some
features.

1.1.5 Source code

Source code is the main part of inter4QL package. The whole inter4QL is divided into classes.
Their structure will be described in chapter 4. In the source code there is a Makefile file,
which allows to compile the whole project. This file DOES NOT compile example external
modules, which source code is in /src/modules/ directory. There is a separate Makefile file
to compile those modules in that directory. Whole compilation process will be described in
next section.

1.1.6 Tests

The interpreter package is delivered with test files, which allow to check, if the interpreter is
fully operational. Tests in /tests/algorithm/ and /tests/checker/ directories are man-
ual tests, which means that they have to be manually loaded into the interpreter. First tests
should load without any problems. Importing files from checker tests should end with error
message. There are also tests in /tests/unit/ directory, which are automatic tests based
on Makefile file. To run those tests, you have to call make command in the directory of the
tests you want to run.

1.2 Compiling the interpreter

The interpreter is ready to be compiled in both Windows and Linux operating systems.
Bison[7] and Flex [9] programs are used for lexical and grammar analysis. Therefore, you
have to have Bison and Flex installed for compilation to be successful.

1.2.1 Linux compilation

First of all, you have to make sure, that Bison and Flex are installed properly. You will also
need make program to be installed on your computer. Having all of that done, you should
call make command in /src/ directory and wait until compiling process is completed and
inter4ql binary file is created. All errors during compilation in testing step of inter4QL

1More about modules in chapter 3

8

development were caused by no or improperly installed Bison and Flex. If you are experi-
encing any difficulties, please make sure those programs are installed and try reinstalling or
updating them.

1.2.2 Windows compilation

Windows compilation has to be done using tools, that emulate Linux environment in Win-
dows. Windows binary files included in 4QL package was compiled using MinGW [11]. Having
it installed, you can run MinGW shell and then compile the project just like it should be
done in Linux operating system. It is important to install Bison and Flex during installation
of MinGW (those packages can be optional, you have to manually select them in package
list).

1.2.3 Windows compilation - known issues

Tests have shown, that there can be some errors during compilation under MinGW even
though everything is set up correctly. Those errors are connected with file lex.yy.cc, which
is generated by Flex. Observations have shown, that the problem is because of wrong include
section for C++ and lack of ”std::” before functions like ”cout”. After modifying this file
by including iostream and cstdio and adding all missing ”std::” (before ”cin”, ”cout”,
”cerr”, ”istream” and ”ostream”) compilation should finish with no problems. Compilation
of external modules did not cause any unexpected errors.

9

10

Chapter 2

Using of the interpreter

This chapter will present the standard scenario of interpreter usage. It will allow to famil-
iarize yourself with the way it works. It will also present report of Valgrind [8], which is
responsible for finding memory leaks.

Command used to test the interpreter using Valgrind :
valgrind --leak-check=full --leak-resolution=high --track-origins=yes

./inter4ql.

2.1 Supported commands

Below you can find commands that are supported in current version of the interpreter:

• import "FILE NAME.4ql". - loads a program from file given as a parameter

• modules. - lists all modules available in the interpreter

• print MODULE NAME. - prints out a module, which name is given as a parameter

• MODULE NAME.RELATION NAME(PARAMETERS). - prints out logical value of requested fact

• clear. - resets the interpreter to the initial state

• exit. - exits the interpreter.

2.2 Basic usage examples

In file example.4ql there is a program, which you can find below:

11

Listing 2.1: Example progam

module example :
r e l a t i o n s :

r (l i t e r a l) . w(l i t e r a l) . o (l i t e r a l) .
r u l e s :

w(x) :− o (x) | r (x) .
r (x) :− w(x) .
−o (x) :− r (x) .

f a c t s :
o (x) .

end .

The first step is to import module from example file into the interpreter:

I n t e r p r e t e r for 4 ql , v e r s i on 2 . 2 , http : //www.4 q l . org /
import ”example . 4 q l ” .
Program loaded !
pr in t example .
module example :
r e l a t i o n s :

r (l i t e r a l)
w(l i t e r a l)
o (l i t e r a l)

beg inning f a c t s :
example . o (x (l i t e r a l)) : t rue

r u l e s :
example .w(x (l i t e r a l)) : t rue :− example . o (x (l i t e r a l))

: t rue
| example . r (x (l i t e r a l)) : t rue
example . r (x (l i t e r a l)) : t rue :− example .w(x (l i t e r a l))

: t rue
example . o (x (l i t e r a l)) : f a l s e :− example . r (x (l i t e r a l))

: t rue
#

As you can see parsing and importing the program was successful. There was also print

command presented. We can now execute some queries for facts - not only to module example:

12

modules .
L i s t o f a v a i l a b l e modules :
−−−−−−−−−−−−−−−−−−−−−−−−−−
− plug in
− math
− example
example . o (x) .
Resu l t s :
−−−−−−−−

example . o (x) : i n c o n s i s t e n t
example .w(VARIABLE) .
Resu l t s :
−−−−−−−−

example .w(x) : i n c o n s i s t e n t
math . ltR (5 . 6 5 , 2 . 0) .
Resu l t s :
−−−−−−−−

math . ltR (5 . 6 5 , 2) : f a l s e
#

As you can see, you can use variables in queries. Last query was performed to module
built into the interpreter. You can also make queries to external modules. What is important,
when you query external or internal module, you can not use variables in the query.

13

At the end, we use clear command and exit the interpreter:

c l e a r .
Modules c l e a r e d !
modules .
L i s t o f a v a i l a b l e modules :
−−−−−−−−−−−−−−−−−−−−−−−−−−
− plug in
− math
e x i t .
Thanks for us ing !
==2478==
==2478== HEAP SUMMARY:
==2478== in use at e x i t : 0 bytes in 0 b locks
==2478== t o t a l heap usage : 3 ,029 a l l o c s , 3 ,029 f r e e s , 360 ,684

bytes a l l o c a t e d
==2478==
==2478== Al l heap b locks were f r e e d −− no l e a k s are p o s s i b l e
==2478==
==2478== For counts o f detec ted and suppressed e r ro r s , rerun

with : −v
==2478== ERROR SUMMARY: 0 e r r o r s from 0 context s (suppressed : 0

from 0)

After resetting the interpreter to initial state, there was modules command executed one
more time to show, that all modules loaded from files are cleared and all modules built into
the interpreter are not modified. At the end, you can also see the output of Valgrind program
ensuring that no memory leaks are possible.

14

Chapter 3

Writing own 4QL program

Program in 4QL language is a list of modules. Modules can be divided into three groups:
local modules, internal modules and external modules. All modules declared in 4QL program
file are called local modules. Internal module is a module built into the interpreter - currently
the only example is math module. External module is an external application written in a
specific way1.

3.1 Module structure

Module structure has not changed since first version of the interpreter and is described in
previously mentioned master’s thesis[3]. We can now discuss structure of a module:

Listing 3.1: Schema of module declaration in 4QL program file

module NAME:
domains :

domain d e c l a r a t i o n s for module NAME
r e l a t i o n s :

r e l a t i o n d e c l a r a t i o n s for module NAME
r u l e s :

r u l e d e c l a r a t i o n s for module NAME
f a c t s :

f a c t d e c l a r a t i o n s for module NAME
end .

3.1.1 Domains

A module can contain zero or more domains, which are aliases for internal interpreter types:

• literal - alphanumeric type starting with lowercase symbol

• integer - signed numeric type

• string - string type in quotes

1More information about modules can be found in chapter 4

15

• real - signed floating point type

• logic - logic type

• date - data type in format RRRR-MM-DD

• datetime - data and time type in format RRRR-MM-DD GG:MM

Domains are really useful when a relation has some arguments with the same type. They
ensure much better readability of the program. What is more, since version 2.1 of the inter-
preter, domains with same type are not unified, which improves time and memory complexity.
Values of domains are also not shared between different modules.

Domain declaration contains type of new domain and its name (example below).

Listing 3.2: Example of domain declarations

module example :
domains :

l i t e r a l name .
date d a t e o f b i r t h .
integer he ight .

. . .
end .

3.1.2 Relations

Each module has to contain at least one relation. Every relation has to contain at least one
parameter. All relations and types of their parameters have to be defined at the beginning of
declaration of a module. Module section called relations contains declarations of relations
in format relationName(typesOfParameters). List of parameters can contain previously
defined domains. An example of relation declaration is shown below:

Listing 3.3: Example of relation declaration

module example :
domains :

s t r i n g ancestorName .
s t r i n g descendantName .

r e l a t i o n s :
descendant (descendantName , ancestorName) .
age (s t r i ng , integer) .
younger (s t r i ng , s t r i n g) .

. . .
end .

3.1.3 Rules

Each module can contain one or more rules defined in section rules. Each rule consists of
one or many conditions and just one conclusion. Conclusion and conditions are separated by
’:-’ sequence. Conditions can be separated by comma sign which is equal to logic ∧ sign or

16

by | sign, which is equal to logic ∨. As it was mentioned before, there are four logic values in
4QL language - true, false, inconsistent and unknown. Because of that, logic operators have
to be redefined:

∧ f u i t

f f f f f
u f u u u
i f u i i
t f u i t

∨ f u i t

f f u i t
u u u i t
i i i i t
t t t t t

→ f u i t

f t t t t
u t t t t
i f f t f
t f f t t

¬
f t
u u
i i
t f

Section rules contains declarations of rules in format ’conclusion :- conditions.’.

The most important feature distinguishing 4QL language and languages from DATALOG¬2 fam-
ily is possibility to put negation not only in conditions, but also in conclusion of rules.

Listing 3.4: Example of rule declarations

module example :
. . .
r u l e s :

younger (NAME, ”John”) :− age (NAME, X) , age (”John” , Y) , math .
l t (X, Y) | descendant (NAME, ”John”) .

−olderThanJohn (NAME) :− younger (NAME, ”John”) .
olderOrPeerOfJohn (NAME) :− −younger (NAME, ”John”) .

. . .
end .

As arguments of relation you can use values with types equal to those defined in relations

section. You can also use variables, which values will be deducted automatically from knowl-
edge base. The name of a variable is a string starting with capital letter. Moreover, you
can use facts that were defined earlier, in different modules or are defined inside the inter-
preter (like all relations from Plugin and Math modules). To use those facts you have to use
following structure: moduleName.relationName(arguments).

2See [4]

17

3.1.4 Facts

Last section you have to define while writing module declaration is facts, which can contain
zero or more initial facts for a module. Facts should be defined using structure
relationName(arguments) and can initially have one of two logical values: true or false.
You cannot use variables in initial facts.

Listing 3.5: Example of initial facts declaration

module example :
. . .
f a c t s :

age (”Evan” , 22) .
age (”Adam” , 30) .
descendant (” Chris ” , ”Adam”) .
−descendant ”Evan” , ”Adam”) .

end .

18

Chapter 4

Developing own inter4QL features

This chapter will introduce internal structure of the interpreter which hopefully will make
start of developing new features as easy as possible. We will start with class diagram, then
all classes will be described and, at the end, some ideas about future development will be
presented.

4.1 Class diagram

Figure 4.1: (Simplified) class diagram of inter4QL

This diagram is presented here to give a brief view on how the interpreter is built. The
block colored with red color is the main class of the project. It contains only one field
of type Application. Application class is colored with yellow color. It is where main
loop of the program is executed. All I/O handling, computation executing and main memory
management is done in that class. It also manages all modules, colored with blue color on the
diagram. There is one, general class for all types of modules called ModuleGeneric. Next,
there are three classes for each type of module: ModuleLocal, ModuleExternal (which is

19

inherited by Plugin) and ModuleInternal (which is inherited by Math). Green boxes show
all classes, that are responsible for lexical and grammar analysis of 4QL programs (Scanner
and Lexer) as well as Checker class, which is responsible for other program checks, that
are not possible during first step of program parsing (just like type checks). At the end,
there are also orange classes, which are responsible for all calculations inside the interpreter
(those classes contain whole knowledge base and algorithms used to calculate well supported
model1).

4.2 Data structures

Changing algorithms may create a need to change data structures used to store data in the
interpreter. That is why the most necessary data structures are described below:

• map<string, vector<Relation> > modules - it is a map, which key contains name o
a module and value contains a vector o relations existing in that module (each relation
contains its name and types of parameters)

• map<string, vector<Fact> > modules - the key of this map contains name of a mod-
ule and value contains a vector o initial facts for this module (each fact contains infor-
mation about name of its module and relation as well as logic value of the fact)

• map<string, Result > model - the key of this module contains again name of a mod-
ule. Value stores Result object. This object keeps all facts that exist in well supported
model for a module. It also has implemented methods of adding new facts to the module
model.

All structures described above are filled with data at the end of parsing a program in
Application class. They are used by algorithms that generate well supported model.

4.3 Writing own external module

Every external application can be used as an external module. It has to meet following
conditions:

1. It has to be placed in ./plugins/ directory

2. It has to react in specific way to commands presented below.

All commands, which external module application should implement:

• interface - the application should print out types of parameters, which should be
passed to it. Valid types are: LITERAL, INTEGER, STRING, REAL, DATE, DATE TIME,

LOGIC

• calculate - this command should be followed by parameters (number and types of pa-
rameters were specified by interface command). Then it should perform calculations
and return a result in form of exit code (1 - true, 0 - false)

• help - it is an optional command, it helps to manage external modules

1All about well supported model can be found in fallowing document: [5]

20

In the inter4QL package there are two sample external modules included: lt and contains.
First one implements simple function less than with interface INTEGER INTEGER. Another one
has interface STRING STRING and it returns true if first parameter is a substring of second
one. The easiest way to develop own plugin is to copy source code of any existing one and
modify it the way you want it to work.
You can see below, how lt module reacts to commands presented above:

lukasz@lukasz−PC / usr / s r c / s r c / p lug in s : . / l t he lp
I n t e r 4 q l p lug in − l e s s than

Usage : Put in to Plug ins in I n t e r 4 q l d i r e c t o r y and run
i n t e r p r e t e r . This p lug in w i l l be automat i ca l l y r e cogn i z ed and

i n s t a l l e d .

lukasz@lukasz−PC / usr / s r c / s r c / p lug in s : . / l t i n t e r f a c e
INTEGER INTEGER

lukasz@lukasz−PC / usr / s r c / s r c / p lug in s : . / l t c a l c u l a t e 2 3

lukasz@lukasz−PC / usr / s r c / s r c / p lug in s : echo \$?
1

4.4 Class characterizations

There is no point in rewriting documents [1], [5] and [6] and describe one more time all
algorithms implemented in the interpreter. The code is also self-explanatory enough to un-
derstand all procedures. This section will present every class in the interpreter with general
information what it is responsible for (obviously, it is not possible to describe each class
in very accurate way). This information should allow to find out what classes have to be
modified (more or less) just by knowing a feature that has to implemented.

• Application - the main loop of the program

Managing input lines

Scanning program for values and adding them to domains

Clearing memory (class destructor)

• Checker - checking program for problems that can not be checked earlier

Finding cycles in queries in modules

Checking duplicated names of modules, relations, domains

Checking facts and rules for correctness of parameters (number and type)

Checking if all referenced modules exist

• Disposable - list of objects to be freed when parsing error occurs

Managing only predefined types of objects

Adding object to object list

21

Clearing list in error mode (with freeing objects)

Clearing list in normal mode (just freeing a list in destructor)

• Domain - stores domain data type

Keeping domain name

Keeping domain type

• Exception - custom exception class

Keeping exception string

Keeping Disposable object (to be ale to clear objects during exception handling)

• Fact - stores data structures for facts

Keeping fact module name

Keeping fact relation name

Keeping vector of Value objects representing parameters

Keeping fact logic value

Keeping info about set values (in facts like MODULE.RELATION(PARAMS) in {true,
false, inconsistent, unknown})

Clearing memory in normal mode (deleting set values)

• Functions - global functions used in different parts of the interpreter

Converting parsing error location to error message

Converting string to variable type object

Converting variable type object to string

• LineParser.y - input file for Bison program

Adding created objects to Disposable object

Managing 4QL grammar

• Logic - functions implementing logic operators

• Main - main class of the interpreter

Creating Application object and running main loop

• Math - class containing all operations for this internal module

Adding (programmatically) relations to the module based on function that are
available

Executing functions based on relation name

• ModuleExternal - general class for external modules

Execute call to external application from Plugin class

Clear Relation objects in destructor

• ModuleGeneric - the most generic class for modules

Every change in this class has to be reflected in all types of modules

22

• ModuleInternal - general class for internal modules

Execute function calls from Math class

Clear Relation objects in destructor

• ModuleLocal - general class for local modules

Adding facts to reasoning module

Managing default domains in local module (inbuilt interpreter types)

Perform queries for facts to reasoning module

Clear data used in local modules in destructor

• Output - wrapper for output operations

Keeping stream responsible for std/err output operations

• Parser - parsing wrapper class

Managing communication with Scanner and LineParser classes

• Plugin - class containing all operations for external module

Scanning for external application that could be used as a module

Running module application and gathering results

• Program - class used to store successfully parsed 4QL program

Initiating all objects that are part of program (Relations, Domains...)

• ReasoningModule - module performing all reasoning operations

Generating facts with logic value unknown only for referenced facts

Adding and removing modules in knowledge base

Adding facts to knowledge base

Finding facts matching query fact

Generating well supported model (algorithm based on document [5])

Clearing data used in reasoning process

• ReasoningWrapper - wrapper allowing to change reasoning modules

• Relation - stores data structures for relations

Keeps name of relation and module name

Keeps vector of Domain objects describing relation parameter types

• Result - object used to store well supported model

Keeps vector of Fact objects

Implements fact adding method to chenge fact logic value if needed

Implements equality method for reasoning algorithm

Implements clearing method for destroying fact in model

23

• Rule - stores data structures for rules

Keeps one fact for rule conclusion and vector of vector of fact for conditions

Clears data used in rule

• Scanner.l - input file for Flex program

Contains all definitions for lexems (like numbers, strings etc)

• Types.h - contains definitions of all major types

Defining type of variables (main interpreter types)

Defining logic values

Defining command types and parsing data structure

• Value - stores data structures for values

Keeps information about the value of the object depending on its type

• VariableSpace - object containing information about domains

Keeps domains separately for each module

Clearing values from domains in destructor

Those are all classes and files that are included into newest version of the interpreter.
Based on those characterizations, you can easily track classes that has to be changed while
implementing new features. For example when you plan to implement new way of calling
external modules, you know that you have to reimplement module application and modify
Plugin class. You may need to make some additional small changes in ModuleExtarnal ,
which you can also deduct from data written above.

24

Summary

This document is a brief manual for the latest version of inter4QL. It was written for all
people, who have not ever worked with 4QL language or interpreter to familiarize themselves
with the idea and working implementation. In the introduction also was presented some
articles about 4QL and inter4QL, which you can read to find out more. Those papers with
this one create really good background for logic professionals and software developers who
want to work in and develop 4QL world.

25

26

Appendix A

4QL language grammar

This appendix contains full grammar of 4QL language in Extended Backus-Naur Form. All
non terminal symbols are placed in triangular brackets while terminal ones are placed in
quotes and are written with fixed-width font. ε symbol means empty production.

< program > : : = < modules >
< modules > : : = ε | < modules > | < module >
< module > : : = ’module’ < id > ’:’

< domains >< relations >< rules >< facts > ’end.’

< domains > : : = ε | ’domains:’ < domain declarations >
< domain declarations > : : = ε | < domain declarations >< domain declaration >
< domain declaration > : : = < type >’ ’< id > ’.’

< relations > : : = ε | ’relations:’ < relation declarations >
< relation declarations > : : = ε | < relation declarations >< relation declaration >
< relation declaration > : : = < id > ’(’ < parameters > ’).’

< rules > : : = ε |’rules:’ < rule declarations >
< rule declarations > : : = ε | < rule declarations >< rule declaration >
< rule declaration > : : = < rule head >’:-’< relation list > ’.’

< rule head > : : = < id >’(’< args > ’).’ | ’-’< id >’(’< args > ’).’

< relation list > : : = < relation in rule >
| < relation list >’,’< relation in rule >
| < relation list >’|’< relation in rule >

< relation in rule > : : = < id >’(’< args > ’).’

| ’-’< id >’(’< args > ’).’

| < id >’.’< id >’(’< args > ’).’

| ’-’< id >’.’< id >’(’< args > ’).’

< args > : : = < arg > | < args >’,’< arg >
< arg > : : = < value > | < variable >

< facts > : : = ε | ’facts:’ < fact declarations >
< fact declarations > : : = ε | < fact declarations >< fact declaration >
< fact declaration > : : = < id >’(’< values > ’).’

| ’-’< id >’(’< values > ’).’

< values > : : = < value > | < values >’,’< value >
< value > : : = < id > | < string >

| < integer > | < real >
| < logic > | < date > | < datetime >

< type > : : = ’literal’ | ’string’ | ’integer’
| ’real’ | ’logic’ | ’date’ | ’datetime’

< parameters > : : = < id > | < parameters >’,’< id >

27

Productions mean:

• < id > - string of literals starting with lower-case sign

• < string > - string of literals in quotes

• < integer > - signed number

• < real > - signed floating point number (with dot as a separation mark)

• < logic > - value from set true, false, unknown, incons

• < date > - data in format RRRR-MM-DD

• < datetime > - data with time in format RRRR-MM-DD GG:MM

28

Bibliography

[1] L. Bialek. Rozwoj interpretera regulowego jezyka zapytan 4QL, M.Sc. Thesis, MIM UW,
2013.

[2] Jan Maluszynski i Andrzej Szalas, Living with Inconsistency and Taming Nonmono-
tonicity. Datalog Reloaded, LNCS 6702, 384-398, Springer-Verlag, 2011.

[3] Patryk Spanily: Interpreter czterowartosciowego regulowego jezyka bazodanowego 4QL,
M.Sc. Thesis, Wydzia l Matematyki, Informatyki i Mechaniki Uniwersytetu Warsza-
wskiego, 2011.

[4] Serge Abiteboul, Richard Hull, Victor Vianu: Foundations of Databases. Addison-Wesley
1995.

[5] Jan Maluszynski i Andrzej Szalas, Partiality and Inconsistency in Agents’ Belief Bases.
KES-AMSTA, Frontiers of Artificial Intelligence and Applications 252, 3-17, IOS Press,
2013.

[6] Patryk Spanily: The inter4QL interpreter, 2012 (http://4ql.org/wp-
content/uploads/2012/10/inter4ql.pdf)

[7] Bison - GNU parser generator, http://www.gnu.org/software/bison/

[8] Valgrind, http://valgrind.org/

[9] flex: The Fast Lexical Analyzer, http://flex.sourceforge.net/

[10] Doxygen, http://www.stack.nl/∼dimitri/doxygen/

[11] MinGW, http://www.mingw.org/

29

